



Ch. 5— The Universal Laws of Motion Difference between speed, velocity and acceleration Acceleration of gravity Depends on properties of planet Doesn't depend on mass of object Difference between mass and weight

Momentum & Force

- Momentum
 - mass x velocity
 - Conserved for systems with no external/outside/net force
- Force
 - effect which changes momentum
 - Net force sum total of forces

Weightlessness

- Free-fall
 - only force on you is gravity
 - Parachute or friction or elevator cable not allowed because it opposes gravity
 - Fall off a balcony, cut an elevator cable, or reside in Earth satellite
- Weightlessness
 - No apparent weight because of being in free fall
 - If you and scale in free-fall, then no apparent force
 - Near Earth orbits are in free-fall, but still have gravity.

Newton's Laws of Motion

Newton never married, apparently never had a lover, and never eve had a real friend, as we use the word in our sociable times. He never had a scientific collaborator indeed, he fought bitterly and ruthlessly with other great philosophers. Having been a fellow and professor at Trinity College, Cambridge, for most of his adult life, he left behind not a single person who claimed to have been his student.

More on Newton's weirdness

■ What Keynes found in these manuscripts amazed him: ethereal spirits, a secret fire pervading matter, a fixation on quicksilver—mercury—as "the masculine and feminine semens ... fixed and volatile, the Serpents around the Caduceus, the Dragons of Flammel." We know now that Newton, the alchemist, hid behind a pseudonym, Jeova sanctus unus, as he slowly and unwittingly poisoned himself with the mercury he continually touched, smelled, and tasted.

One final Newton tidbit

■ In one experiment, to prove that colour perception is caused by pressure on the eye, Newton slid a darning needle around the side of his eye until he could poke at its rear side, dispassionately noting "white, darke & coloured circles" so long as he kept stirring with "ye bodkin."

Newton's First Law of Motion

- If no force acting on an object, it remains constant in its state of motion or rest (its velocity doesn't change)
- Examples:
 - Walk around on train or even jump off it
 - "Cut ties"....Sun disappears, rope breaks...
 - Space ship in outer space w/ no thrusters

Newton's Second Law

- Equation relating acceleration and force:F=ma
- For the same force, a smaller mass will accelerate more
- To get the same acceleration, need a larger force

Newton's Third Law

- For any force, there is an equal but opposite force
- If you lift dancing partner, s/he exerts an equal and opposite force down
- As air accelerates from an air brush, there is an equal but opposite force on your hand via the brush
- Similar to rocket thrust of a spaceship

Conservation of Momentum

- First Law: if no force, momentum stays same
- Second Law: a force can change momentum BUT...
- Third Law: since there's an equal but opposite force on another object...
- The total momentum of both objects stays the same

Other stuff

- Conservation of Angular Momentum
 - Mv
 - For a spinning object w/ constant mass, moving it to smaller r means bigger v
 - Conserved unless there's a torque
- Universal Law of Gravitation:
 - Force proportional to product of masses
 - Inversely proportional to distance squared
 - Explained the "why" of Kepler's laws
 - Newton's version lets us calculate bigger mass
 - Orbits ellipse (bound) or parabola/hyperbole (unbound)

Tides

- Gravity causes two daily tides
- Sides closest to and furtherest from the Moon experience high tides
- Sun's effect only about 1/3 that of Moon
 - Additive...Spring tides
 - Subtractive...Neap Tides
- Tidal friction
 - Slows Earth's rotation, prolongs day
 - Earth's tidal friction on Moon slowed rotation bringing it toward synchronous rotation

Lab & Labwork

- Lab is about repeatability
- Need to record uncertainties
- Comparison of two quantities not simple
- Need to be able to compute % diffs or % errors
- Lab/science research requires judgement (hence always subject to more testing)

Telescopes & Light

- Light "bends" at interfaces of two different materials
- Some light reflects and some refracts
- Lenses produce images...characterized by a focal length
- Focal length, object and image distance related
- Telescope consists of (at least) two lenses (eyepiece and objective)

Ch. 6—Light

- Why is light important for astronomy?
- Difference between power and energy
- How does light interact w/ matter?
- What's the dual nature of light all about?
 - wave versus particle
 - Which variables apply to each?
- Electromagnetic spectrum...what goes where?

Spectra

- What is it?
- How do we get one?
- What can we tell from them and how?
- What's absorption/emission/doppler?

Aspects of Observing

- How do you recognize a planet?
 - Location?
 - Properties of its image?
- What are ideal sky conditions?

Ch.7—Telescopes

- Angular Resolution
 - What is it?
 - Do you want it big or small?
 - How do you design telescope for best?
 - What happens if you have poor resolution?
- What are fundamental properties of a telescope?
- How does magnification fit in?
- Under what conditions to telescopes have to be in specific places?

Telescopes & Light

- Telescopes come w/ finders, why?
- Finders need to be aligned, how?
- Mounts come in two flavors
 - Which are they?
 - Advantages/disadvantages?
 - Which ones need alignment? How?