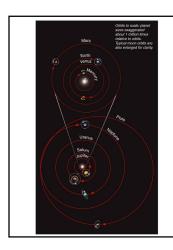
Chapter 7 Our Planetary System Earth, as viewed by the Voyager spacecraft

Agenda

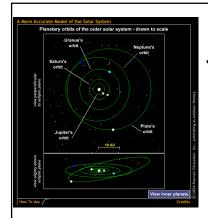
- Pass back & discuss Test 2
- Where we are (at)
- Ch. 7—Our Planetary System
- Finish "Einstein's Big Idea"

Intro Astronomy

- A. General Basics
 - Overview of constituents of universe
 - Basic physics
 - Night sky & our motion through it
 - coordinates
 - telescopes


Intro Astronomy

- B. Our Solar System
- C. Stars
- D. Galaxies
- E. Cosmology—Large Scale Structure of Universe
- F. Other—Astrobiology, etc

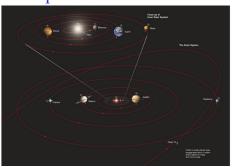

7.1 Studying the Solar System

- Our goals for learning
- What does the solar system look like?
- What can we learn by comparing the planets to one another?
- What are the major features of the Sun and planets?

What does the solar system look like?

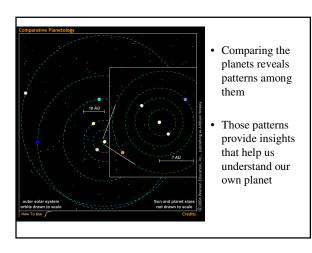
- Eight major planets with nearly circular orbits
- Pluto is smaller than the major planets and has a more elliptical orbit

 Planets all orbit in same direction and nearly in same plane

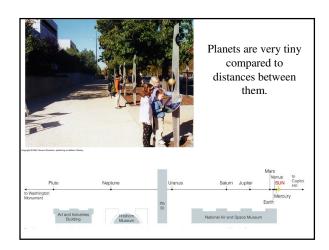

Thought Question How does the Earth-Sun distance compare with the Sun's radius

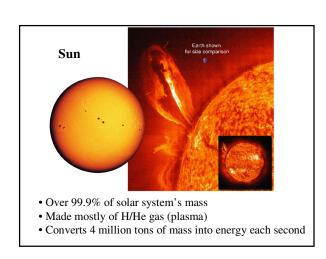
- a) It's about 10 times larger.
- b) It's about 50 times larger.
- c) It's about 200 times larger.
- d) It's about 1000 times larger.

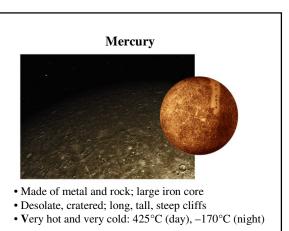
Thought Question How does the Earth-Sun distance compare with the Sun's radius

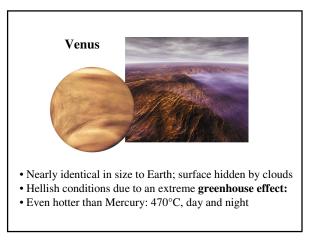

- a) It's about 10 times larger.
- b) It's about 50 times larger.
- c) It's about 200 times larger.
- d) It's about 1000 times larger.

What can we learn by comparing the planets to one another?

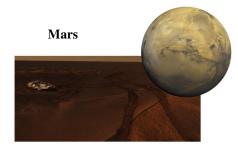



Comparative Planetology


- We can learn more about a world like our Earth by studying in context with other worlds in the solar system.
- Stay focused on *processes* common to multiple worlds instead of individual facts specific to a particular world.

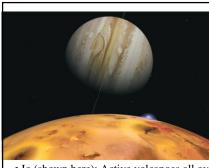


What are the major features of the Sun and planets? Jupiler Mars Earth Verus Mercury Verus Sun and planets to scale

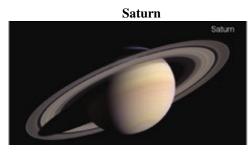

Earth

Earth and Moon to scale

- An oasis of life
- The only surface liquid water in the solar system
- A surprisingly large moon



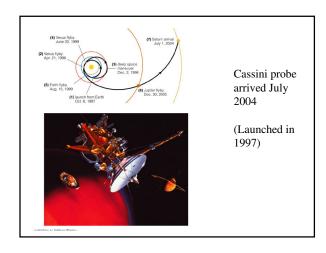
- Looks almost Earth-like, but don't go without a spacesuit!
- Giant volcanoes, a huge canyon, polar caps, more...
- Water flowed in the distant past; could there have been life?

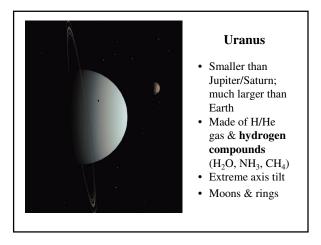

Jupiter

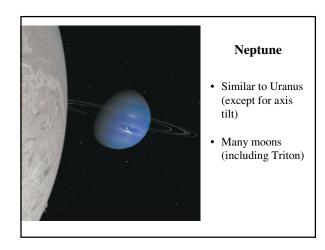
- Much farther from Sun than inner planets
- Mostly H/He; no solid surface
- 300 times more massive than Earth
- Many moons, rings ...

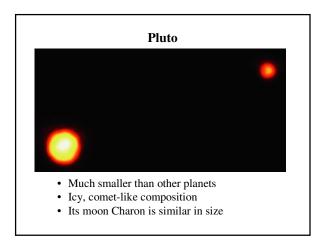
Jupiter's moons can be as interesting as planets themselves, especially Jupiter's four Galilean moons

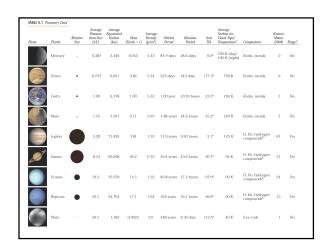
- Io (shown here): Active volcanoes all over
- Europa: Possible subsurface ocean
- Ganymede: Largest moon in solar system
- Callisto: A large, cratered "ice ball"




- · Giant and gaseous like Jupiter
- · Spectacular rings
- · Many moons, including cloudy Titan
- · Cassini spacecraft currently studying it




Artist's conception


Rings are NOT solid; they are made of countless small chunks of ice and rock, each orbiting like a tiny moon.

Thought Question What process created the elements from which the terrestrial planets were made?

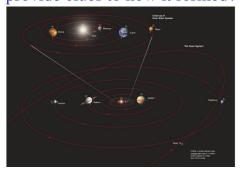
- a) The Big Bang
- b) Nuclear fusion in stars
- c) Chemical processes in interstellar clouds
- d) Their origin is unknown

Thought Question What process created the elements from which the terrestrial planets were made?

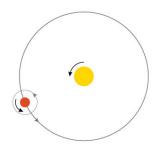
- a) The Big Bang
- b) Nuclear fusion in stars
- c) Chemical processes in interstellar clouds
- d) Their origin is unknown

What have we learned?

- What does the solar system look like?
 - Planets orbit Sun in the same direction and in nearly the same plane.
- What can we learn by comparing the planets to one another?
 - Comparative planetology looks for patterns among the planets.
 - Those patterns give us insight into the general processes that govern planets
 - Studying other worlds in this way tells us about our own Earth


What have we learned?

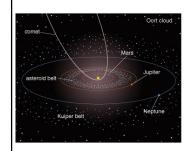
- What are the major features of the Sun and planets?
 - Sun: Over 99.9% of the mass
 - Mercury: A hot rock
 - Venus: Same size as Earth but much hotter
 - Earth: Only planet with liquid water on surface
 - Mars: Could have had liquid water in past
 - Jupiter: A gaseous giant
 - Saturn: Gaseous with spectacular rings
 - Uranus: A gas giant with a highly tilted axis
 - Neptune: Similar to Uranus but with normal axis
 - Pluto: An icy "misfit" more like a comet than a planet


7.2 Patterns in the Solar System

- Our goals for learning
- What features of the solar system provide clues to how it formed?

What features of the solar system provide clues to how it formed?

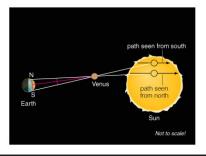
Motion of Large Bodies


- All large bodies in the solar system orbit in the same direction and in nearly the same plane
- Most also rotate in that direction

Two Main Planet Types

- Terrestrial planets are rocky, relatively small, and close to the Sun
- Jovian planets are gaseous, larger, and farther from Sun

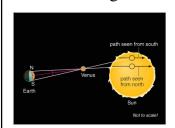
Swarms of Smaller Bodies


 Many rocky asteroids and icy comets populate the solar system

Notable Exceptions

 Several exceptions to the normal patterns need to be explained

Special Topic: How did we learn the scale of the solar system?

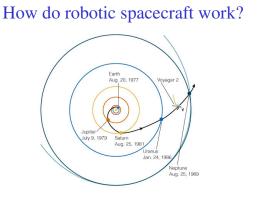

Transit of Venus

Transit of Venus: June 8, 2004

 Apparent position of Venus on Sun during transit depends on distances in solar system and your position on Earth

Measuring Distance to Venus

- Measure apparent position of Venus on Sun from two locations on Earth
- Use trigonometry to determine Venus' distance from the distance between the two locations on Earth


What have we learned?

- What features of the solar system provide clues to how it formed?
 - Motions of large bodies: All in same direction and plane
 - Two main planet types: Terrestrial and jovian
 - Swarms of small bodies: Asteroids and
 - Notable exceptions: Rotation of Uranus, Earth's large moon, etc.

7.3 Spacecraft Exploration of the Solar System

Flybys

- Our goals for learning
- How do robotic spacecraft work?

- A flyby mission flies by a planet just once
- Cheaper than other mission but have less time to gather data

Orbiters

- · Go into orbit around another world
- More time to gather data but cannot obtain detailed information about world's surface

Probes or Landers

- · Land on surface of another world
- Explore surface in detail

Sample Return Missions

- Land on surface of another world
- Gather samples
- Spacecraft designed to blast off other world and return to Earth
- Apollo missions to Moon are only sample return missions to date

Combination Spacecraft

• Cassini/Huygens mission contains both an orbiter (Cassini) and a lander (Huygens)

What have we learned?

- How do robotic spacecraft work?
 - Flyby: Flies by another world only once.
 - Orbiter: Goes into orbit around another world
 - Probe/Lander: Lands on surface
 - Sample Return Mission: Returns a sample of another world's surface to Earth