

Agenda

- Announce:
 Pass back "Waves on a String" "Parallax I"
- Errors vs Uncertainty
- deGrasse Tyson
- Review Ch. 11—Jovian Planets
- Ch. S4—Building Blocks

Leonids

• <u>Night</u>

Errors vs Uncertainty

- Uncertainty & Error:
 - Always present to some degree
 - "Better" equipment/design can help make small
- Uncertainty: – Allowance
 - Allowance for inherent inability to **measure** exactly
- Error:
 - Real world **phenomena** which you know are there, you cannot eliminate, but which you cannot account for
 - Examples: friction, wind resistance, imperfect weighting of dice.

About how long does it take a spacecraft to go from Earth to Jupiter?

- A week
- A month
- A year
- Several years
- Several decades

About how long does it take a spacecraft to go from Earth to Jupiter?

- A week
- A month
- A year
- Several years
- Several decades

What are the most common elements in the atmospheres of the Jovian Planets?

- Water
- Hydrogen and helium
- Oxygen and nitrogen
- Oxygen and carbon
- None of the above

What are the most common *elements* in the atmospheres of the Jovian Planets?

- Water
- Hydrogen and helium
- Oxygen and nitrogen
- Oxygen and carbon
- None of the above

What are the most common hydrogen compounds in the atmospheres of the Jovian Planets?

- Water (H₂O), methane (CH₄), ammonia (NH₃)
- Water and Carbon Dioxide (CO₂)
- Water and Carbon Monoxide (CO)
- Sulfur Dioxide (SO₂) and propane (C₃H₈)
- None of the above

What are the most common hydrogen compounds in the atmospheres of the Jovian Planets?

- Water (H₂O), methane (CH₄), ammonia (NH₃)
- Water and Carbon Dioxide (CO₂)
- Water and Carbon Monoxide (CO)
- + Sulfur Dioxide (SO $_2$) and propane (C $_3\mathrm{H}_8$)
- None of the above

Since there are a lot of flammable gases on Jupiter, such as methane and propane,

- if you lit a match, would Jupiter burn?
- No

Since there are a lot of flammable gases on Jupiter, such as methane and propane, if you lit a match, would Jupiter burn?

• No – because there is no free oxygen

Convection circulates gasses from deep in Jupiter's atmosphere to the top, where they

- Escape into space
- Condense and make rain
- Condense and make clouds
- Form compounds

Convection circulates gasses from deep in Jupiter's atmosphere to the top, where they

- Escape into space
- Condense and make rain
- Condense and make clouds
- Form compounds

Jupiter does *not* have a large metal core like the Earth. How

- can it have a magnetic field?The magnetic field is left over from when Jupiter accreted
- Its magnetic field comes from the Sun
- It has metallic hydrogen inside, which circulates and makes a magnetic field
- That's why its magnetic field is weak

Jupiter does *not* have a large metal core like the Earth. How

- can it have a magnetic field?The magnetic field is left over from when Jupiter accreted
- Its magnetic field comes from the Sun
- It has metallic hydrogen inside, which circulates and makes a magnetic field
- That's why its magnetic field is weak

Auroras (called Northern Lights in the United States):

- Are found on Earth
- Are found on Jupiter
- Indicate a magnetic field is present
- Result when particles in the solar wind hit a planet
- All of the above

Auroras (called Northern Lights in the United States):

- Are found on Earth
- Are found on Jupiter
- Indicate a magnetic field is present
- Result when particles in the solar wind hit a planet
- All of the above

Jupiter is about three times as massive as Saturn, but only slightly larger. Why? It is made of stronger material

- It is made of weaker material
- Adding mass increases gravity and compresses gasses
- Because they are made of different gasses
- None of the above

Jupiter is about three times as massive as Saturn, but only slightly larger. Why? It is made of stronger material

- It is made of weaker material
- Adding mass increases gravity and compresses gasses
- Because they are made of different gasses
- None of the above

What is the most geologically active world we know of in the

- solar system? Earth–due to its earthquakes and volcanoes
- Mercury, the hottest planet
- Mars
- Jupiter
- Jupiter's moon Io

What is the most geologically active world we know of in the

- solar system? Earth–due to its earthquakes and volcanoes
- Mercury, the hottest planet
- Mars
- Jupiter
- Jupiter's moon Io

How does Io get heated by Jupiter?

- Auroras
- Light
- Infrared radiation
- Jupiter "squeezes it" by pulling harder on one side than the other
- Volcanoes

How does Io get heated by Jupiter?

- Auroras
- Light
- Infrared radiation
- Jupiter "squeezes it" by pulling harder on one side than the other
- Volcanoes

How do astronomers think Jupiter generates internal heat?

- Fusion
- Chemical reactions
- Friction due to its fast rotation
- Shrinking and releasing gravitational potential energy
- Tidal forces

How do astronomers think Jupiter generates internal heat?

- Fusion
- Chemical reactions
- Friction due to its fast rotation
- Shrinking and releasing gravitational potential energy
- Tidal forces

What shape are moons?

- Spherical
- Large ones are spherical, small ones irregular
- It depends on which planet they orbit.
- Earth and Jupiter's moons are spherical, Uranus and Neptune's are not

What shape are moons?

- Spherical
- Large ones are spherical, small ones irregular
- It depends on which planet they orbit.
- Earth and Jupiter's moons are spherical, Uranus and Neptune's are not

Why can icy moons be geologically active when a planet the same size would be geologically "dead?"

- Planets are older some cooled and died.
- Ice melts at a lower temperature than rock, making flows and activity easier
- Many have tidal heating caused by their planet
- All of the above
- #2 and #3

Why can icy moons be geologically active when a planet the same size would be geologically "dead?"

- Planets are older some cooled and died.
- Ice melts at a lower temperature than rock, making flows and activity easier
- Many have tidal heating caused by their planet
- All of the above
- #2 and #3

Why do Jupiter, Saturn, Uranus, and Neptune <u>all</u> have rings?

- Rings were left over from solar system formation
- They all captured particles
- All four planets had a large moon that disintegrated
- All have small moons and small orbiting particles that constantly collide and make rings

Why do Jupiter, Saturn, Uranus, and Neptune <u>all</u> have rings?

- Rings were left over from solar system formation
- They all captured particles
- All four planets had a large moon that disintegrated
- All have small moons and small orbiting particles that constantly collide and make rings

Surprising discovery? - Saturn's core is pockmarked with impact craters and dotted with volcanoes erupting basaltic lava.

- 1. Plausible. Saturn's moons also show impact craters and volcanoes.
- 2. Plausible. Saturn's atmosphere originated from the volatiles in impactors that were released via volcanic activity.
- 3. Implausible. No impactors would survive the immense pressures at the depth of Saturn's core.
- 4. Implausible. Any large impactor approaching Saturn would be broken up by tidal forces.
- 5. Implausible. Saturn's high rotation would prevent an impactor from reaching its core.

Surprising discovery? - Saturn's core is pockmarked with impact craters and dotted with volcanoes erupting basaltic lava.

- 1. Plausible. Saturn's moons also show impact craters and volcanoes.
- 2. Plausible. Saturn's atmosphere originated from the volatiles in impactors that were released via volcanic activity.
- 3. Implausible. No impactors would survive the immense pressures at the depth of Saturn's core.
- 4. Implausible. Any large impactor approaching Saturn would be broken up by tidal forces.
- 5. Implausible. Saturn's high rotation would prevent an impactor from reaching its core.

S4.1 The Quantum Revolution

- Our goals for learning
- How has the quantum revolution changed our world?

The Quantum Realm

- Light behaves like particles (photons)
- Atoms consist mostly of empty space
- Electrons in atoms are restricted to particular energies
- The science of this realm is known as *quantum mechanics*

Surprising Quantum Ideas

- Protons and neutrons are not truly fundamental they are made of *quarks*
- Antimatter can annihilate matter and produce pure energy
- Just four forces govern all interactions: gravity, electromagnetic, strong, and weak
- · Particles can behave like waves
- · Quantum laws have astronomical consequences

Quantum Mechanics and Society

- Understanding of quantum laws made possible our high-tech society:
 - Radios and television
 - Cell phones
 - Computers
 - Internet

What have we learned?

- How has the quantum revolution changed our world?
 - Quantum mechanics has revolutionized our understanding of particles and forces and made possible the development of modern electronic devices

S4.2 Fundamental Particles and Forces

- Our goals for learning
- What are the basic properties of subatomic particles?
- What are the fundamental building blocks of matter?
- What are the fundamental forces in nature?

Properties of Particles

- Mass
- Charge (proton +1, electron -1)
- Spin
 - Each type of subatomic particle has a certain amount of angular momentum, as if it were spinning on its axis

Fermions and Bosons

- Physicists classify particles into two basic types, depending on their spin (measured in units of *h*/2π)
- Fermions have half-integer spin (1/2, 3/2, 5/2,...)
 Electrons, protons, neutrons
- *Bosons* have integer spin (0,1,2,...)
 - Photons

Four Forces

- Strong Force (holds nuclei together)
 Exchange particle: gluons
- Electromagnetic Force (holds electrons in atoms) - Exchange particle: photons
- Weak force (mediates nuclear reactions) - Exchange particle: weak bosons
- Gravity (holds large-scale structures together) - Exchange particle: gravitons

Strength of Forces

- Inside nucleus:
 - strong force is 100 times electromagnetic
 - weak force is 10^{-5} times electromagnetic force
 - gravity is 10⁻⁴³ times electromagnetic
- Outside nucleus:
 - Strong and weak forces are unimportant

What have we learned?

- What are the basic properties of subatomic particles?
 - Charge, mass, and spin
- What are the fundamental building blocks of matter?
 - Quarks (up, down, strange, charmed, top, bottom)
 - Leptons (electron, muon, tauon, neutrinos)
- What are the fundamental forces in nature?
 - Strong, electromagnetic, weak, gravity

S4.3 Uncertainty and Exclusion in the Quantum Realm

- Our goals for learning
- What is the uncertainty principle?
- What is the exclusion principle?

Uncertainty Principle

• The more we know about where a particle is located, the less we can know about its momentum, and conversely, the more we know about its momentum, the less we can know about its location

Position of a Particle

• In our everyday experience, a particle has a well-defined position at each moment in time

• But in the quantum realm particles do not have well-defined positions Electrons in Atoms

- In quantum mechanics an electron in an atom does not orbit in the usual sense
- We can know only the probability of finding an electron at a particular spot

Location and Momentum				
Uncertainty in location	х	Uncertainty in location	=	Planck's Constant (<i>h</i>)

Quantum States

• The *quantum state* of a particle specifies its location, momentum, orbital angular momentum, and spin to the extent allowed by the uncertainty principle

Exclusion Principle

• Two fermions of the same type cannot occupy the same quantum state at the same time

What have we learned?

- What is the uncertainty principle?
 - We cannot simultaneously know the precise value of both a particle's position and its momentum
 - We cannot simultaneously know the precise value of both a particle's energy and the time that it has that energy
- What is the exclusion principle?
 - Two fermions cannot occupy the same quantum state at the same time

S4.4 The Quantum Revolution

- Our goals for learning
- How do the quantum laws affect special types of stars?
- How is "quantum tunneling" crucial to life on Earth?
- How empty is empty space?
- Do black holes last forever?

Degeneracy Pressure

- Laws of quantum mechanics create a different form of pressure known as *degeneracy pressure*
- Squeezing matter restricts locations of its particles, increasing their uncertainty in momentum
- But two particles cannot be in same quantum state (including momentum) at same time
- There must be an effect that limits how much matter can be compressed—degeneracy pressure

Auditorium Analogy

• When the number of quantum states (chairs) is nearly the same as the number of particles (people), it's hard to squeeze them into a smaller space

Degeneracy Pressure in Stars

- *Electron degeneracy pressure* is what supports white dwarfs against gravity—quantum laws prevent its electrons from being squeezed into a smaller space
- *Neutron degeneracy pressure* is what supports neutron stars against gravity—quantum laws prevent its neutrons from being squeezed into a smaller space

Quantum Tunneling and Life

- At the core temperature of the Sun, protons do not have enough energy to get close enough to other protons for fusion (electromagnetic repulsion is too strong)
- Quantum tunneling saves the day by allowing protons to tunnel through the electromagnetic energy barrier

Virtual Particles near Black Holes Particles can be produced near black holes if one member of a virtual pair falls

• Energy to permanently create other particle comes out of black hole's mass

into the black hole

Hawking Radiation

- Stephen Hawking predicted that this form of particle production would cause black holes to "evaporate" over extremely long time periods
- Only photons and subatomic particles would be left

What have we learned?

- How do the quantum laws affect special types of stars?
 - Quantum laws produce degeneracy pressure that supports white dwarfs and neutron stars
- How is "quantum tunneling" crucial to life on Earth?
 - Uncertainty in energy allows for quantum tunneling through which fusion happens in Sun

What have we learned?

• How empty is empty space?

- According to quantum laws, virtual pairs of particles can pop into existence as long as the annihilate in an undetectably short time period
- Empty space should be filled with virtual particles whose combined energy is the vacuum energy
- Do black holes last forever?
 - According to Stephen Hawking, production of virtual particles near a black hole will eventually cause it to "evaporate"