Vilenkin’s *Many Worlds in One*

- Cosmology—study of the large scale structure of the Universe
- What constitutes “large scale”?
- How is this different than material in Thorne’s book? Ford’s book?
- How are all three books similar?

The Big Bang (Theory)

- Features of the theory
 - Universe has been expanding from some smaller region (not into anything!)
 - Was very hot and cools as it expands
 - Primordial nucleosynthesis

Big Bang Evidence #1

- Hubble’s observation of the expansion of galaxies
 - Why not stars?
 - Are we at the center?
 - What’s expanding?

Big Bang Evidence #2

- CMBR—Cosmic Microwave Background Radiation
 - Hugely isotropic radiation associated with the Universe
 (what does this mean?)
 - Indicative of a very cold temperature of the Universe of 2.73 Kelvin (how so?)

Agenda

- Announce:
 - No Class on Thursday
 - Read Chs 4-6
- Handback/discuss tests
- Chs. 1-3
If you’re still not convinced…

- All the astrophysics we do which relies on Big Bang…...Works!
- That’s what we said about relativity and quantum mechanics
- Again, it’s not that we wish to brainwash you…we’d desperately want to find stuff that does not work!

What Banged?

- The big bang theory doesn’t attempt to explain what banged, how, or why
- Free to insert God, philosophy, etc here
- Not particularly clear how far science, even in principle, take us

Guth’s Proposal

- Substance w/ special properties
 - Causes gravity to be repulsive (not a new force)
 - Density always remains the same
 - Doesn’t decrease w/ expansion
 - Increasing strength with increasing volume
- Energy comes from increasingly negative gravitational energy
- Termed Inflation

Inflation

- Universe began
 - very small
 - Chunk of this “repulsive gravity stuff”
- Expanded very quickly for a short time
- Repulsive stuff decayed away producing lots of hot particles
- Universe continued expanding (not so fast) and cooling and that’s what we observe now

Einstein & Cosmology

- Study a very simple Universe
 - Homogenous—uniform density
 - Isotropic—looks same in all directions
 - Static (why?)—doesn’t change in time
- No solution for such assumptions
- Stuff wants to attract other stuff
- Decides his equations must be changed…
Einstein’s Biggest Blunder

- How could he change equations?
 - Needed to maintain “reference frame invariance”
 - Constant speed of light
- Only freedom was to introduce *cosmological constant*
 - Energy of empty space
 - Strange stuff: Negative pressure (tension)

Nature of Vacuum Energy

- Constant (in space and time) energy density and tension
- Can’t see effect of tension or energy density because it’s everywhere
- Except for its gravitational effect
- Tension so great overcomes its energy density to produce “anti-gravity”
- Can produce a static universe where vacuum energy balances attraction of the rest of the Universe

Friedmann’s Universe(s)

- Assume:
 - Homogenous
 - Isotropic
 - Closed (but not static)
- Universe expands (bigger sphere)
- Then contracts (smaller sphere)
- Big Bang and Big Crunch are singular

Do you prefer eternal Universe or singular beginning?

- The problem with an eternal universe:
 - Eventual heat death…everything reaches same temperature (thermal equilibrium)
 - Entropy increases in a closed system (2nd law)
- So if Universe has existed forever, then we should be in state of maximum entropy…we don’t so Universe not eternal
- The problem with a 13.7 billion year old Universe:
 - Why did it start then?
 - How was it homogenous and isotropic?
 - etc

The Competitor: The Steady State Theory

- Universe remains essentially the same (steady state)
- Universe expands (as per Hubble)
- Matter continually gets created in voids left by expansion
- Failure of energy conservation comparably to creation of Universe at Big Bang
- However, observations show differences long ago…universe didn’t look same billions of years ago