1. An object is moving in a circular path with a radius of 4.00 m. If the object moves through an angle of 45.0 degrees, then the angle is:
 A. 0.25 radians.
 B. 0.53 radians.
 C. 0.79 radians.
 D. 1.02 radians.
 E. 1.44 radians.

2. An object is moving in a circular path with a radius of 5.00 m. If the object moves through an angle of 270 degrees, then the tangential distance traveled by the object is:
 A. 2.04 m.
 B. 2.52 m.
 C. 3.44 m.
 D. 4.02 m.
 E. 4.71 m.

3. A CD has a diameter of 12.0 cm. If the CD is rotating at a constant angular velocity of 20.0 radians per second, then the period of the rotational motion is:
 A. 0.314 s.
 B. 0.441 s.
 C. 0.582 s.
 D. 0.698 s.
 E. 0.750 s.

4. The units of momentum are:
 A. ML/T.
 B. M/T.
 C. L/T^2.
 D. ML/T^2.
 E. ML^2/T^2.

5. A 2.0 kg ball is moving at 4.0 m/s WEST. The momentum of the ball is:
 A. 4.00 kg•m/s WEST.
 B. 6.00 kg•m/s WEST.
 C. 8.0 kg•m/s WEST.
 D. 10 kg•m/s WEST.
 E. 12 kg•m/s WEST.

6. If the momentum of a ball is doubled, then the kinetic energy is:
 A. 0.5 times larger.
 B. 2 times larger.
 C. 3 times larger.
 D. 4 times larger.
 E. 5 times larger.
7. An astronaut in a space suit is motionless in outer space. The propulsion unit strapped to her back ejects some gas with a velocity of 50 m/s. The astronaut recoils with a velocity of 1.0 m/s. If the mass of the astronaut and space suit after the gas is ejected is 120 kg, the mass of the gas ejected is:

A. 1.0 kg.
B. 1.9 kg.
C. 2.4 kg.
D. 3.00 kg.
E. 3.6 kg.

8. A 120 kg mass is blown apart into an 80 kg piece and a 40 kg piece. After the blast, the two masses are moving apart with a relative velocity of 60 m/s. The total kinetic energy after the explosion is:

A. 21 kJ.
B. 35 kJ.
C. 48 kJ.
D. 56 kJ.
E. 82 kJ.

9. A 3.00 kg mass is located at x = 2.0 cm and y = 0.0. A 3.00 kg mass is located at x = 0.0 and y = 2.0 cm. A 4.00 kg mass is located at x = 3.0 cm and y = -3.0 cm. Where is the location of the center of mass?

A. (+1.8 cm, -0.60 cm)
B. (+1.8 cm, +0.60 cm)
C. (+0.60 cm, -1.8 cm)
D. (+3.5 cm, -0.6 cm)
E. (+1.8 cm, +1.6 cm)

10. A rifle fires a bullet. Immediately after the bullet is fired, which of the following is not true?

A. The rifle and the bullet have the same magnitude of momentum.
B. The force on the rifle due to the bullet and the force on the bullet due to the rifle have the same magnitude.
C. The impulse on the rifle due to the bullet and the impulse on the bullet due to the rifle have the same magnitude.
D. The rifle and the bullet do not have the same kinetic energy.
E. The rifle and the bullet have the same kinetic energy.

11. A centrifuge has a rotational inertia of 5.50×10^{-3} kg\(\cdot\)m\(^2\). How much energy must be supplied to bring it from rest to 500 rad/s?

A. 627 J
B. 570 J
C. 688 J
D. 743 J
E. 583 J

12. A 20.0 cm wrench is used to generate a torque at a bolt. A force of 50 N is applied perpendicularly at the end of the wrench. The torque generated at the bolt is:

A. 8.0 N\(\cdot\)m.
B. 10 N\(\cdot\)m.
C. 14 N\(\cdot\)m.
D. 22 N\(\cdot\)m.
E. 37 N\(\cdot\)m.
13. A 10 kg object has a moment of inertia of 1.25 kg\(\cdot\)m\(^2\). If a torque of 2.5 N\(\cdot\)m is applied to the object, the angular acceleration is:

A. 10 rad/s\(^2\)
B. 8.0 rad/s\(^2\)
C. 6.0 rad/s\(^2\)
D. 4.0 rad/s\(^2\)
E. 2.0 rad/s\(^2\)

14. A 4.00 kg hollow sphere \((I = \frac{2}{3} MR^2)\) is spinning with an angular velocity of 10.0 rad/s. The diameter of the sphere is 20.0 cm. The angular kinetic energy of the spinning sphere is:

A. 1.75 J.
B. 1.50 J.
C. 1.33 J.
D. 0.90 J.
E. 0.75 J.

15. An ice dancer with her arms stretched out starts into a spin with an angular velocity of 1.00 rad/s. Her moment of inertia with her arms stretched out is 2.48 kg\(\cdot\)m\(^2\). What is the increase in her rotational kinetic energy when she pulls in her arms to make her moment of inertia 1.40 kg\(\cdot\)m\(^2\)?

A. 0.957 J
B. 0.902 J
C. 0.870 J
D. 0.750 J
E. 0.690 J

16. Water has a density of 1000 kg/m\(^3\). The column of water that would produce a pressure of \(1.0135 \times 10^5\) N/m\(^2\) is:

A. 7.3300 m.
B. 9.8200 m.
C. 10.340 m.
D. 15.720 m.
E. 20.010 in.

17. A submarine is at a depth of 500 m under the water. The force on a circular hatch of 1.00 m in diameter due to the seawater (density = 1.025 kg/m\(^3\)) pressure from outside the submarine is:

A. \(2.45 \times 10^6\) N.
B. \(3.95 \times 10^6\) N.
C. \(4.94 \times 10^6\) N.
D. \(5.50 \times 10^6\) N.
E. \(6.34 \times 10^6\) N.

18. The car lift in a gas station operates with an air pressure of 2000 kPa. The piston of the car lift has a diameter of 30.0 cm. What is the mass of the largest car that the lift can raise?

A. 8,750 kg
B. 9,450 kg
C. 10,300 kg
D. 14,400 kg
E. 17,500 kg
19. A hydraulic lift has a small piston with a diameter 5.0 cm piston and the large piston with a diameter of 25 cm. What force must be applied on the small piston in order to lift a car on the large piston that weighs 13,000 N?

A. 520 N
B. 5200 N
C. 260 N
D. 2600 N

20. Water is flowing through a pipe with a constriction. The area of the narrow section is one-half the area of the wide section. If the velocity of the incompressible fluid is 3.2 m/s in the wide section, then what is the velocity of the fluid in the narrow section?

A. 6.4 m/s
B. 5.9 m/s
C. 5.0 m/s
D. 4.7 m/s
E. 4.2 m/s

21. A 10 kg ball weighs 98 N in air and weighs 75 N when submerged in water. The buoyant force of the water on the ball is:

A. 32 N.
B. 30 N.
C. 24 N.
D. 23 N.
E. 19 N.

22. A 1.5 kg ball is floating in water. The volume displaced by the ball is:

A. 0.0015 m3.
B. 0.0027 m3.
C. 0.0036 m3.
D. 0.0040 m3.
E. 0.0051 m3.

23. A small hole is cut in the bottom of a water storage tank. The initial depth of the water is 8.00 m. If the diameter of the small hole in the bottom of the tank is 1.00 cm, then what is the flow rate of the water leaving the tank?

A. 9.83×10^{-4} m3/s
B. 8.75×10^{-4} m3/s
C. 8.21×10^{-4} m3/s
D. 7.45×10^{-4} m3/s
E. 7.21×10^{-4} m3/s

24. What is the gravitational force between two nuclei, each of mass 3.20×10^{-27} kg and separated by a distance of 10.6×10^{-11} m? ($G = 6.67 \times 10^{-11}$ N m2/kg2)

A. 6.08×10^{-47} N
B. 6.08×10^{-46} N
C. 6.08×10^{-45} N
D. 6.08×10^{-44} N
25. The weight of a 1.00 kg on the surface of the moon is, \((G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2, R \text{ of the moon is } 1.74 \times 10^6 \text{ m}, \text{ mass of the moon is } 7.35 \times 10^{22} \text{ kg})\)

A. 9.82 N
B. 7.52 N
C. 1.62 N
D. 0.980 N
E. 0.540 N

26. A 2.0 kg mass is connected to a spring with a spring constant of 9.0 N/m. The displacement is given by the expression \(x(t) = 12.0 \text{ cm sin}(\omega t)\). What is the maximum displacement of the simple harmonic motion?

A. 8.0 cm
B. 12 cm
C. 20 cm
D. 24 cm
E. 30 cm

27. An equation that describes the displacement in Simple Harmonic Motion is: \(x(t) = 1.20 \text{ m sin}(2.40 \text{ rad/s} \ t)\). What is the maximum velocity of the SHM?

A. 5.32 m/s
B. 4.82 m/s
C. 3.68 m/s
D. 2.88 m/s
E. 2.03 m/s

28. A transverse wave travels at 250 m/s along the z-axis. If the frequency of the periodic vibrations of the wave is 440 Hz, then what is the wavelength of the wave?

A. 21.9 cm
B. 26.7 cm
C. 33.7 cm
D. 56.8 cm
E. 73.7 cm

29. The frequency of a periodic wave is 340 Hz. The period of the vibration motion of the wave is:

A. 2.56 milliseconds.
B. 2.94 milliseconds.
C. 3.55 milliseconds.
D. 3.94 milliseconds.
E. 4.25 milliseconds.

30. A transverse periodic wave is represented by the equation \(y(x, t) = 2.50 \text{ cm cos}(2500 \text{ rad/s} \ t - 15.0 \text{ m}^{-1} \ x)\). What is the frequency of the vibration of the wave?

A. 490 Hz
B. 467 Hz
C. 422 Hz
D. 398 Hz
E. 302 Hz
31. The following figure is a graph of a wave at a fixed position.

![Graph of a wave at a fixed position]

The following figure is a graph of the same wave at a fixed time.

![Graph of the same wave at a fixed time]

What is the velocity of the wave in the above figure?

A. 150 m/s
B. 200 m/s
C. 250 m/s
D. 300 m/s
E. 450 m/s

32. What is the frequency of the wave?

![Graph of the wave]

A. 80 Hz
B. 50 Hz
C. 120 Hz
D. 140 Hz
E. 160 Hz