 "rame," and English "name."

May 31, 2008

Gibbous (adjective)
Pronuciation: [gi:bets]
Definition: Convex. protiberant: protudidus: more than balf but less than filly illuminated, as the moon: humpbacked
 "gibberous" widit the same meaning as today's word. Just remember to distigusish "gibber" from the word for an incompretensibile language, "gibert," foom "nidn we ger "giberish," These word

 frist eranddeugetiter, a mucd happiet gibbosity
 "Hump, bow." Today's word coness fiom Katy Brezger's backyad. "Now the gibbous moon in its grandeur presites orer the manicured backyard and stops thot of The Woods. Strange dancing shadows sway in the summer windstom. The litre mumbella spoating on the picice table even slecumbs to the heavy brezeses, turining this way and that as the wind gasps and blows. The Woods forebode even as they beckon, the wind tearing back the orercariage pist enough to Cast illuminations on tie old tactors. on, there be monsiters, and madness looms."

The harvest moon is the moon at or about the period of fullness that is nearest to the autumnal equinox. The harvest moon is often mistaken for the modern day hunter's moon.

Contents [hide]

1 Appearance
2 Times of appearance
3 Other names
4 In popular culture
5 See also
6 References
7 External links

[^0]

Ancient Greek Astronomers

- Through the use of models and observations, they were the first to use a careful and systematic manner to explain the workings of the heavens
- Limited to naked-eye observations, their idea of using logic and mathematics as tools for investigating nature is still with us today
- Their investigative methodology is in many ways as important as the discoveries themselves

Early Ideas: Aristotle

By 300 B.C., Aristotle presented naked-eye observations for the Earth's spherical shape:

- Shape of Earth's shadow on the Moon during an eclipse

Periods of Western Astronomy

- Western astronomy divides into 4 periods
- Prehistoric (before 500 B.C.)
- Cyclical motions of Sun, Moon and stars observed
- Keeping time and determining directions develops
- Classical (500 B.C. to A.D. 1400)
- Measurements of the heavens
- Geometry and models to explain motions
- Renaissance (1400 to 1650)
- Accumulation of data led to better models
- Technology (the telescope) enters picture
- Modern (1650 to present)
- Physical laws and mathematical techniques
- Technological advances accelerate

Early Ideas: Pythagoras

- Pythagoras taught as early as 500 B.C. that the Earth was round, based on the belief that the sphere is the perfect shape used by the gods

Early Ideas: Aristotle

- He also noted that a traveler moving south will see stars previously hidden by the southern horizon

Early Ideas: The Size of the Earth

- Eratosthenes (276195 B.C.) made the first measurement of the Earth's size
- He obtained a value of 25,000 miles for the circumference, a value very close to today's value

Early Ideas: Distance and Size of the Sun and Moon

- The sizes and distances of the Sun and Moon relative to Earth were determined by Aristarchus about 75 years before Eratosthenes measured the Earth's size
- Once the actual size of the Earth was determined, the absolute sizes and distances of the Sun and Moon could be determined

Early Ideas: The Size of the Earth

- He measured the shadow length of a stick set vertically in the ground in the town of Alexandria on the summer solstice at noon, converting the shadow length to an angle of solar light incidence, and using the distance to Syene, a town where no shadow is cast at noon
 on the summer solstice

Early Ideas: Distance and Size of the Sun and Moon

These relative sizes were based on the angular size of objects and a simple geometry formula relating the object's diameter, its angular size, and its distance

Measuring the Diameter of Astronomical Objects

Planets and the Zodiac

- The planets (Greek for "wanderers") do not follow the same cyclic behavior of the stars
- The planets move relative to the stars in a very narrow band centered about the ecliptic and called the zodiac
- Motion and location of the planets in the sky is a combination of all the planets' orbits being nearly in the same plane and their relative speeds about the Sun

Retrograde Motion

- Occasionally, a planet will move from east to west relative to the stars; this is called retrograde motion
- Explaining retrograde motion was one of the main reasons astronomers ultimately rejected the idea of the Earth being located at the center of the solar system

Planets and the Zodiac

- Apparent motion of planets is usually from west to east relative to the stars, although on a daily basis, the planets always rise in the east

Early Ideas: The Geocentric

 Model- Because of the general east to west motion of objects in the sky, geocentric theories were developed to explain the motions
- Eudoxus (400-347 B.C.) proposed a geocentric model in which each celestial object was mounted on its own revolving transparent sphere with its own separate tilt
- The faster an object moved in the sky, the smaller was its corresponding sphere
- This simple geocentric model could not explain retrograde motion without appealing to clumsy and unappealing contrivances

Early Ideas: The Geocentric

Ptolemy of Alexandria

- Ptolemy of Alexandria improved the geocentric model by assuming each planet moved on a small circle, which in turn had its center move on a much larger circle centered on the Earth
- The small circles were called epicycles and were incorporated so as to explain retrograde motion

Ptolemy of Alexandria

- Ptolemy's model was able to predict planetary motion with fair precision
- Discrepancies remained and this led to the development of very complex Ptolemaic models up until about the 1500s
- Ultimately, all the geocentric models collapsed under the weight of "Occam's razor" and the heliocentric models
 prevailed

Astronomy in the Renaissance

- Nicolaus Copernicus (1473-1543)
- Could not reconcile centuries of data with Ptolemy's geocentric model
- Consequently, Copernicus reconsidered Aristarchus's heliocentric model with the Sun at the center of the solar system

Astronomy in the Renaissance

- However, problems remained:
remained:
- Could not predict pla positions any more accurately than the model of Ptolemy
- Could not explain lack of parallax motion of stars
- Conflicted with Aristotelian "common sense"

Non-Western Contributions

- Islamic Contributions
- Relied on celestial phenomena to set its religious calendar
- Created a large vocabulary still evident today (e.g., zenith, Betelgeuse)
- Developed algebra and Arabic numerals
- Asian Contributions
- Devised constellations based on Asian mythologies
- Kept detailed records of unusual celestial events (e.g., eclipses, comets, supernova, and sunspots)
- Eclipse predictions

Astronomy in the Renaissance

- Heliocentric models

explain retrograde motion as a natural consequence of two planets (one being the Earth) passing each other

- Copernicus could also derive the relative distances of the planets from the Sun

Astronomy in the Renaissance

- Tycho Brahe (15461601)
- Designed and built instruments of far greater accuracy than any yet devised
- Made meticulous measurements of the planets

Astronomy in the Renaissance

- Tycho Brahe (1546-1601)
- Made observations (supernova and comet) that suggested that the heavens were both changeable and more complex than previously believed
- Proposed compromise geocentric model, as he observed no parallax motion!

Johannes Kepler (1571-1630)

- Using Tycho Brahe's data, discovered that planets do not move in circles around the Sun, rather, they follow ellipses with the Sun located at one of the two foci!
- Astronomers use the term eccentricity to describe how round or "stretched out" an ellipse is - the higher (closer to 1) the
 eccentricity, the flatter the ellipse.

Kepler's 2nd Law

- The orbital speed of a planet varies so that a line joining the Sun and the planet will sweep out equal areas in equal time intervals
- The closer a planet is to the Sun, the faster it moves

B

Astronomy in the Renaissance

- Johannes Kepler (1571-1630)
- Upon Tycho's death, his data passed to Kepler, his young assistant
- Using the very precise Mars data, Kepler showed the orbit to be an ellipse

- Planets move in elliptical orbits with the Sun at one focus of the ellipse Kepler'
ve in
rbits with
one focus

Kepler's $3^{\text {rd }}$ Law

- The amount of time a planet takes to orbit the Sun is related to its orbit's size
- The square of the period, P , is proportional to the cube of the semimajor axis, a

Kepler's $3^{\text {rd }}$ Law

- This law implies that a planet with a larger average distance from the Sun, which is the semimajor axis distance, will take longer to circle the Sun
- Third law hints at the nature of the force holding the planets in orbit

$P=$ time to complete orbit $a=$ semimajor axis
C

Kepler's $3^{\text {rd }}$ Law

- Third law can be used to determine the semimajor axis, a, if the period, P, is known, a measurement that is not difficult to make

Astronomy in the Renaissance

- Galileo (1564-1642)
- Contemporary of Kepler
- First person to use the telescope to study the heavens and offer interpretations
- The Moon's surface has
features similar to that of the Earth \Rightarrow The Moon is a ball of rock

Evidence for the Heliocentric Model

- Venus undergoes full phase cycle \Rightarrow Venus must circle Sun

Astronomy in the Renaissance

- The Sun has spots \Rightarrow The Sun is not perfect, changes its appearance, and rotates
- Jupiter has four objects orbiting it \Rightarrow The objects are moons and they are not circling Earth
- Milky Way is populated by uncountable number of stars \Rightarrow Earth-centered universe is too simple

Astronomy in the Renaissance

- Credited with originating the experimental method for studying scientific problems
- Deduced the first correct "laws of motion"
- Was brought before the Inquisition and put under house arrest for the remainder of his life

Isaac Newton

- Isaac Newton (16421727) was born the year Galileo died
- He made major advances in mathematics, physics, and astronomy

- He pioneered the modern studies of motion, optics, and gravity and discovered the mathematical methods of calculus
- It was not until the $20^{\text {th }}$ century that Newton's laws of motion and gravity were modified by the theories of relativity

The Growth of Astrophysics

- New Discoveries
- In 1781, Sir William Herschel discovered Uranus; he also discovered that stars can have companions
- Irregularities in Uranus's orbit together with law of gravity led to discovery of Neptune
- New Technologies
- Improved optics led to bigger telescopes and the discovery of nebulas and galaxies
- Photography allowed the detection of very faint objects

Isaac Newton

[^0]:
 borealis) and "Southem Lights" (aurora anstralis.)

 Space probes, such as the Voyager probes, have measured the magnetic fields of the planets and even auroras have been photographed on other planets. The spacecraft Mariner 10 flew by Mercury in 1974 and surprised the science community. Mercury was thought to be cold and dead
 Probes found that Mars and Venus do not have a siguificant magretic field.

 Jupier, Satum, Uramus, and Neppune all have magnetic fields much stronger than that of the Earth. Juppiter is the champion- having the largest magnetic field. The mechanism that causes their magnetic fiedds is not fully understood. It is beieved that in the case of Saturn and Jupiter tiar their magnetic fieds may be calised by hydrogent conducting eleetricity deep within the planet. Hydrogen near the planets core may be compressed so densely by ail the planetary layers above that it becomes an electrical conductor.

 The planet Uranus has an interesting maggietic fied. Uramus' poles lie almost in the plane of its orbit around the Sun. The magretic poles are fully 60 degrees aray from the geographic poles, which results in a wild rotation of Uranus' magnetic field as the planet rotates. On the other hand, Saturn's magnetic field and rotation axes seem to be pretty much the same, making Saturn somewhat magnetically unique.
 Our Moon lacks a magretic field, which implies its interior is cold and inactive. However, rocks from the Moon show permanent magnetism, suggesting that at one time the Moon had a magnetic field. The physics of planetary magnetic fieds still contains many mysteries for scientists.

 A wonderfil summary of these facts may be found at hitto:/www.aderplanetarium.ory learn planets planetary geology/magnetic fields. ssi
 483 words
 3068 C\&S
 \qquad

