1/20/09

- · Course/Syllabus Overview
- Review of 301 stuff
- Start Ch. 12
 - More than just knowing various facts...
 - Understand how we arrive at these conclusions

301 Physics

Physics Concepts Light

- Properties of (frequency,wavelength,energy)
 Info From (doppler, 3 types of spectra)
- Atoms
 Gravity
- Special Relativity Our Sun
- Hydrostatic equilibrium
 Gas ball of hydrogen and helium
- Telescopes (gathering power,resolution,coordinates/mounts,using) Structural Hierarchy of the Universe Scientific Methodology

The Family of Stars

- Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas, many of which are vastly larger and brighter than the Sun
- They look dim because of their vast distances
- Astronomers cannot probe stars directly, and consequently must devise indirect methods to ascertain their intrinsic properties
- Measuring distances to stars and galaxies is not easy
- Distance is very important for determining the intrinsic properties of astronomical objects

- Astronomers want to know the motions, sizes, colors, and structures of stars
- This information helps to understand the nature of stars as well as their life cycle
- The light from stars received at Earth is all that is available for this analysis

Luminosity

- The amount of energy a star emits each second is its *luminosity* (usually abbreviated as *L*)
- A typical unit of measurement for luminosity is the watt
- Compare a 100-watt bulb to the Sun's luminosity, 4 × 10²⁶ watts

Luminosity

- Luminosity is a measure of a star's energy production (or hydrogen fuel consumption)
- Knowing a star's luminosity will allow a determination of a star's distance and radius

Radius

· Common sense: Two objects of the same temperature but different sizes, the larger one radiates more energy than the smaller one

In stellar terms: a star of larger radius will have a higher luminosity than a smaller star at the same temperature

Tying It All Together

- The Stefan-Boltzmann law only applies to stars, but not hot, low-density gases
- · We can combine SB and IS to get:

 $L = 4\pi R^2 \sigma T^4$

- *R* is the radius of the star
- Given L and T, we can then find a star's radius!

Tying It All Together

- The methods using the Stefan-Boltzmann law and interferometer observations show that stars differ enormously in radius
 - Some stars are hundreds of times larger than the Sun and are referred to as giants
 - Stars smaller than the giants are called dwarfs

$$\frac{R_s}{R_{\oplus}} = \left(\frac{L_s}{L_{\oplus}}\right)^{1/2} \left(\frac{T_s}{T_{\oplus}}\right)^{2/2}$$

- Where s refers to the star and ⊙ refers to the Sun
- Given for Sirius $L_s = 25L_{\odot}$, $T_s = 10,000$ K, and ٠ for the Sun T_{\odot} = 6000 K, one finds R_s = 1.8 R_{\odot}

The Magnitude Scale

- About 150 B.C., the Greek astronomer Hipparchus measured apparent brightness of stars using units called *magnitudes*
 - Brightest stars had magnitude 1 and dimmest had magnitude 6
 - The system is still used today and units of measurement are called apparent magnitudes to emphasize how bright a star looks to an observer
- A star's apparent magnitude depends on the star's luminosity and distance – a star may appear dim because it is very far away or it does not emit much energy

The Magnitude Scale

- The apparent magnitude can be confusing
 Scale runs "backward": high magnitude = low brightness
 - Modern calibrations of the scale create negative magnitudes
 - Magnitude <u>differences</u> equate to brightness <u>ratios</u>:
 - A difference of 5 magnitudes = a brightness ratio of 100
 - 1 magnitude difference = brightness ratio of 100^{1/5}=2.512

The Magnitude Scale

- Astronomers use *absolute magnitude* to measure a star's luminosity
 - The absolute magnitude of a star is the apparent magnitude that same star would have at 10 parsecs
 - A comparison of absolute magnitudes is now a comparison of luminosities, no distance dependence
 - An absolute magnitude of 0 approximately equates to a luminosity of $100L_{\odot}$

The Spectra of Stars

- A star's spectrum typically depicts the energy it emits at each wavelength
- A spectrum also can reveal a star's composition, temperature, luminosity, velocity in space, rotation speed, and other properties
- On certain occasions, it may reveal mass and radius

Measuring a Star's Composition

- As light moves through the gas of a star's surface layers, atoms absorb radiation at some wavelengths, creating dark absorption lines in the star's spectrum
- Every atom creates its own unique set of
- absorption lines
 Determining a star's surface composition is then a matter of matching a star's absorption lines to those known for atoms

This technique of determining composition and abundance can be tricky!

Temperature's Effect on Spectra

- Consequently, absorption lines will be present or absent depending on the presence or absence of an electron at the right energy level and this is very much dependent on temperature
- Adjusting for temperature, a star's composition can be found – interestingly, virtually all stars have compositions very similar to the Sun's: 71% H, 27% He, and a 2% mix of the remaining elements

Early Classification of Stars

Modern Classification of Stars

 Annie Jump Cannon discovered the classes were more orderly in appearance if rearranged by temperature – Her reordered sequence became O, B, A, F, G, K, M (O being the hottest and M the coolest) and are today known as *spectral classes*

Modern Classification of Stars

• Cecilia Payne then demonstrated the physical connection between temperature and the resulting absorption lines

Binary Stars

- Two stars that revolve around each other as a result of their mutual gravitational attraction are called *binary stars*
- Binary star systems offer one of the few ways to measure stellar masses – and stellar mass plays the leading role in a star's evolution
- At least 40% of all stars known have orbiting companions (some more than one)
- Most binary stars are only a few AU apart a few are even close enough to touch

Visual Binary Stars Visual binaries are binary systems where we can directly see the orbital motion of the stars about each other by comparing images made several years apart

• By tradition, bright stars are placed at the top of the H-R diagram and dim ones at the bottom, while high-temperature (blue) stars are on the left with cool (red) stars on the right (<u>Note</u>: temperature does not run in a traditional direction)

Credit De trobas de Cargon de La Cargon de L

The HR Diagram

- The diagonally running group of stars on the H-R diagram is referred to as the *main sequence*
- Generally, 90% of a group of stars will be on the main sequence; however, a few stars will be cool but very luminous (upper right part of H-R diagram), while others will be hot and dim (lower left part of H-R diagram)

<text><list-item><list-item><list-item>

Luminosity Classes

- Luminous stars (in upper right of H-R diagram) tend to be less dense, hence narrow absorption lines
- H-R diagram broken into luminosity classes: Ia (bright supergiant), Ib (supergiants), II (bright giants), III (giants), IV (subgiants), V (main sequence)
 - Star classification example: The Sun is G2V

Summary of the HR Diagram

- Most stars lie on the main sequence
- Of these, the hottest stars are blue and more luminous, while the coolest stars are red and dim
- Star's position on sequence determines its mass, being more near the top of the sequence
- Three classes of stars:
- Main-sequence
- Giants
- White dwarfs

The Instability Strip • Most variable stars plotted on H-R diagram lie in the narrow "instability strip" 0.00

- Method of Standard Candles • Step 1: Measure a star's brightness (B) with a
- photometer • Step 2: Determine star's Luminosity, L
- Use combined formula to calculate d, the distance to the star
- Sometimes easier to use ratios of distances - Write Inverse-Square Law for each star

- Take the ratio:
$$B_{near} = \frac{L_{near}}{4\pi d_{near}^2}, B_{far} = \frac{L_{far}}{4\pi d_{far}^2}$$

 $\frac{B_{near}}{B_{far}} = \left(\frac{d_{far}}{d_{near}}\right)^2$

 L_{far}

