

Observations of the Universe

- In the early years of the 20th century, astronomers envisioned the Universe as a static place with only the Milky Way and a few companions
- It was not until the 1920s that astronomers realized the Universe was filled with other galaxies millions of lightyears apart and that the Universe was expanding

Motion of Galaxies

- In general, a galaxy obeys the Hubble law: speed of recession is proportional to the galaxy's distance, the proportionality given by the Hubble constant
- The motion away is due to the expansion of space itself – not like bomb fragments going through the air, but like buttons attached to an expanding balloon

Age of the Universe

- Running the Universe's expansion backward implies all mass becomes confined into a very small volume, what was once called the "Primeval Atom"
- Assuming galaxies have always moved with the velocities they now have, the Hubble Law gives age for Universe of 14 billion years with H = 70 km/s/Mpc

The Cosmic Horizon

- The age of the Universe limits the distance we can see since the speed of light is finite
- In a static Universe, this distance is directly determined from its age and the speed of light
- The maximum distance one can see (in principal, but not necessarily in practice) is called the **cosmic horizon**

The Size of the Universe

- The distance to the cosmic horizon gives a rough measure of the *radius of the* (visible) Universe
- For a 14 billionyear-old Universe, this radius is 14 billion light-years

Olbers's Paradox

- In 1823, Heinrich Olbers offered Olbers's Paradox: If the Universe extends forever and has existed forever, the night sky should be bright – but of course it isn't
- Olbers reasoned that no matter which direction you looked in the sky a star's light should be seen

In a sufficiently large group of stars and galaxies, no dark sky shows between them. That is, the sky is bright.

The Cosmic Microwave Background

- The proposed very-dense early Universe implied that it must have been very hot, perhaps 10 trillion K
- It was proposed that as the Universe expanded and cooled, the radiation that existed at that early time would survive to the present as microwave radiation
- This radiation was accidentally discovered by Arno Penzias and Robert Wilson in 1965 and has since then been referred to as the *cosmic microwave background* (CMB)

Evolution of the Universe Expanding forever means that as all the stars consume their hydrogen, the Universe will become black and empty – this scenario is the *open universe*A Universe that collapses as a "Big Crunch" might lead to another Primeval Atom, leading perhaps to the birth of another universe – this scenario is the *closed universe*The expansion speed of the Universe becomes zero when the Universe has reached infinite size – this scenario is the *flat universe*

Evolution of the Universe

- The energy content of the Universe depends on what type of universe we are in
 - An open universe has positive total energy
 - A flat universe has zero total energy
 - A closed universe has negative total energy
 - In principal, if we measure the energy content of the Universe, we can tell what type it is
 - The energy content of the Universe is the sum of its positive kinetic energy of expansion and its negative energy of gravitational binding (basically its mass content

The Inflationary Universe

The inflationary models of the universe mark the frontier of our understanding of the cosmos and give tentative answers to several unsolved mysteries

- Others suggest existence of other separate universe
- Still others posit that the Universe has 10 or 11 dimensions
- Finally, these models also try to explain why space is so flat, and how all the forces of nature relate to one another

Grand Unified Theories

- Before the start of the inflation period, 3 of the 4 fundamental forces (electromagnetic, strong, and weak) were joined together in a manner described by *grand-unified theories* (GUTs)
- As the Universe inflated, symmetry breaking separated the forces releasing energy
- This energy was then used by the *false vacuum* (a non-zero energy state with negative pressure)
- According to General Relativity, a negative pressure manifests itself as a repulsive gravitational force (lasting only for the brief inflation period)