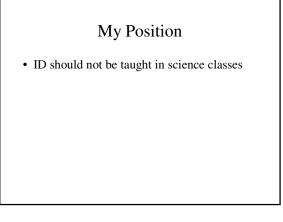


Agenda

- Discuss Tuesday's movie
- Sample Project
- Present Issue
 - Present Controversy (and the various sides)
- Present Your Opinion
- Backup Your Opinion
- Review Ch. 16
- Solar Altitude measurement
- Exercise: measuring galactic distances

Role of SMBHs in galactic life cycle:

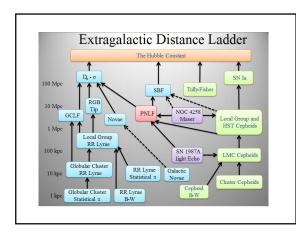
 may limit runaway growth of galaxies
 Fling stars in a collision out of galaxy
 Propel matter out of galaxy along jets
 Which comes first, the SMBH or the galaxy?

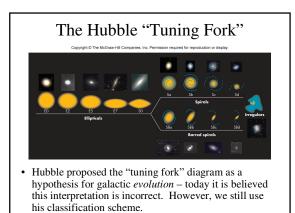

 Jets/SMBH/Magnetic field powers engine
 Even quiescent SMBH can have flare-ups
 What were the astronomers looking at...telescopes or computers?

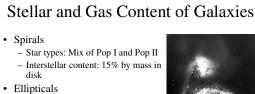
Evolution vs Intelligent Design

- Explanations for the origin of species:
 - Evolution: natural selection combined with random genetic mutations provide a bias towards beneficial novel characteristics which carry-on through reproduction
 - Intelligent Design: wings, eyes could not have evolved and instead provide evidence of design. Sure evolution happens, but it's minor.

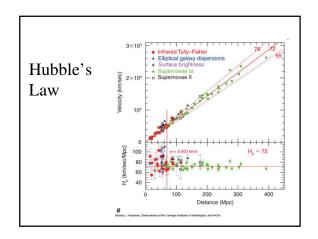
The Controversy

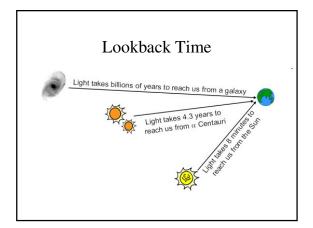

- ID proponents want it taught in science classes alongside criticism of evolution
 - Assert that ID is competing scientific theory (Source...)
 Assert various criticisms of evolution:
 - Gaps in fossil record (Source...)
 No way to "evolve an eye" (Source...)
- Critics say:
- ID is not science
- Many criticisms of evolution not scientifically valid
- Some gaps in fossil records, but doesn't mean evolution is wrong

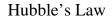



Reasoning...

- Never failed a test...sure, not every fossil of every intermediate step has been found, but many gaps have since been filled in (Source: blahblah) Various criticism have been answered:
- Wing evolution (Source...)
 Eye evolution (Source...)
 Examples of co-evolution further attest to robustness of mechanism
 Examples (Sources...)



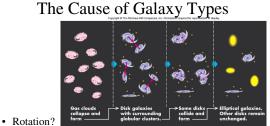




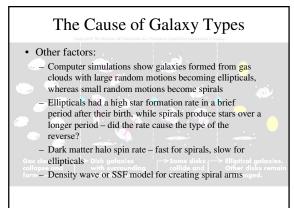
- Star types: Only Pop II, blue stars rare
- Interstellar content: Very low density, very hot gas
- Irregulars
 - Star types: blue stars common - Interstellar content: As much as 50% by mass

- Can use Law in reverse to deduce distance from redshift
- Often distance is just quoted in terms of redshift

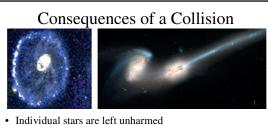
Galactic Evolution

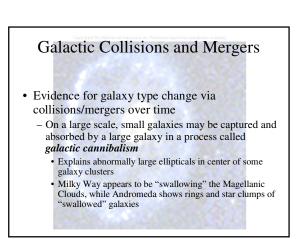

- · Birth: Collapse of massive clouds
 - Probably only produces small galaxies
 - Such young galaxies have been observed at large
 - distances (therefore early times in the Universe)
- Questions:
 - Where does variety of galaxies (e.g. size, composition) come from?
 - Though spiral arms rotate rel. fast, bulges and halos don't...how to square with presumed birth?

Galactic Collisions

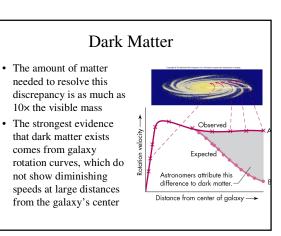

- Suspect Mergers play large role:
 - If lots of gas results: spiral
 - If not, then elliptical
- Ellipticals could get incorporated as a bulge
- Explains wide ranging ages of stars in our bulge
- · Explains distorted galaxies observed

Stellar and Gas Content of Galaxies


- Other items of note:
 - Ellipticals have a large range of sizes from globular cluster sizes to 100 times the mass of the Milky Way
 - Census of galaxies nearby: Most are dim dwarf E and
 - dwarf Irr sparsely populated with stars
 Census of distant galaxies: In clusters, 60% of members are spirals and S0, while in sparsely populated regions it is 80%
 - Early (very young) galaxies are much smaller than Milky Way – merging of these small galaxies is thought to have resulted in the larger galaxies of today


- Spirals in general rotate relatively faster than ellipticals
- Rotation speed of ellipticals of different flattening shows little or no relation to rotational speed
- Consequence: Rotation plays a role in galaxy types, but other factors probably do so too

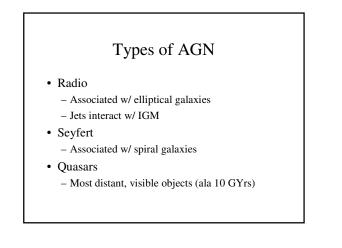
Galactic Collisions and Mergers Could galaxy's type change with time? Computer simulations show a galaxy's shape can change dramatically during a close encounter with another galaxy

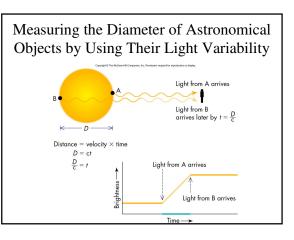


- Gas/dust clouds collide triggering a burst of star formation
- A small galaxy may alter the stellar orbits of a large spiral to create a "ring galaxy"
- Evidence (faint shell-like rings and dense clumps of stars) of spirals colliding and merging into ellipticals

Galactic Collisions and Mergers

- Evidence for galaxy change type via collisions/mergers over time
 - Very distant clusters have a higher proportion of spirals than near clusters
 - Distant clusters contain more galaxies within a given volume
 - Distant galaxies show more signs of disturbance by neighboring galaxies (odd shapes, bent arms, twisted disks), what astronomers call "harassment"

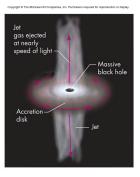

Dark Matter Candidates

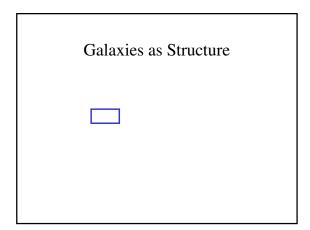

• Dark matter cannot be:

- Ordinary dim stars because they would show up in infrared images
- Cold gas because this gas would be detectable at radio wavelengths
- Hot gas would be detectable in the optical, radio, and x-ray regions of the spectrum
- Objects that cannot be ruled out:
 - Tiny planetesimal-sized bodies, extremely low-mass cool stars, dead white dwarfs, neutron stars, and black holes
 - Subatomic particles like neutrinos
 - Theoretically predicted, but not yet observed, particles referred to as WIMPS (weakly interacting massive particles)
 - Distance from center of galaxy

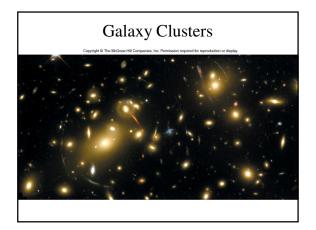
Active Galaxies

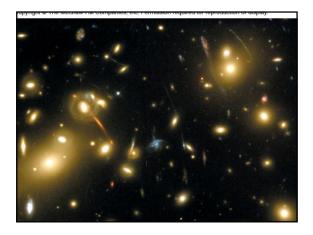
- Centers (nuclei) emit abnormally large amounts of energy from a tiny region in their core
- · Emitted radiation usually fluctuates
- In many instances intense radio emission and other activity exists well outside the galaxy
- Centers of active galaxies referred to as AGNs active galactic nuclei
- 10% of all galaxies are active
- Three overlapping classes: radio galaxies, Seyfert galaxies, and quasars

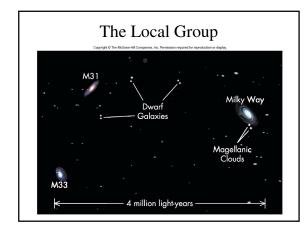

Cause of Activity in Galaxies

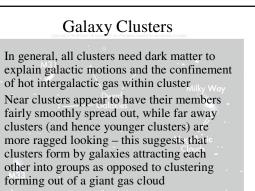

- All active galaxies have many features in common this suggests a single model to explain all of them
 - Such a model must explain how a small region can emit an extreme amount of energy over a broad range of wavelengths
 - Model must be unusual since no ordinary star could be so luminous nor could enough ordinary stars be packed into such a small volume

Cause of Activity in Galaxies

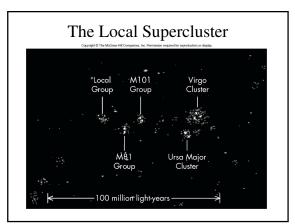

Basic model

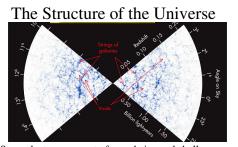

- Black hole about the size of the Earth with a gas accretion disc tens to hundreds of AU across
 Most gas drawn into
- black hole heats to millions K
- Some gas channeled by magnetic fields into jets
- Accretion gas replenished by nearby passing stars or material from collision with another galaxy



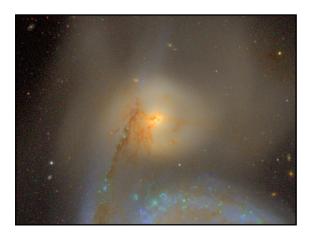


×	M	anal		Ars		B Blog		s d	Mcros	Base	Addn	2 12h	http	
*	+	*	* 4	1	8	http://www	sdss.org/			//10	י ציייקק		C130	
	ome							_					_	
		Data												
	ciend]
		Rele	200	•										(
	duca		ase	5			Th	e Sh	oan Di	oital Sky	Survey			Г
		Gall	land					0.01	oun Di	Situr On	Survey			
		v Su			The	Sloan I	Digital Sky S	Survey	(SDSS) i	s one of the	most ambitic	us and influe	ntial	
	egac EGU		rvey									ns (SDSS-I,		
	-	⊏ nova			2000	-2005;	SDSS-II, 20	005-20	08), it obt	ained deep, i	multi-color in	nages coverin	g	Ш
	urve		•									ontaining mo	re	L
		y oorat	ion								s. SDSS dat			1
		atio										ual increment		
	DSS		15									tober 31, 200		
	_	ct U					, and will co				SS facilities,	began observ	ations	Ľ
	earc		5		m Ju	ily 2008	, and will co	onunu	e unrougn .	2014.				1
			勝		New mega area spec obse	Mexico apixel ca of the ta tra of (a ervation.	o, equipped amera image full moon. A and hence d	with t ed 1.5 A pair listanc design	wo power square de of spectro es to) mon red set of	ful special-pr grees of sky graphs fed b e than 600 g software pip	at a time, at oy optical fib	t Observator, ments. The 1 bout eight tim ers measured uasars in a s ace with the	20- es the	
												d more than a ined spectra of		

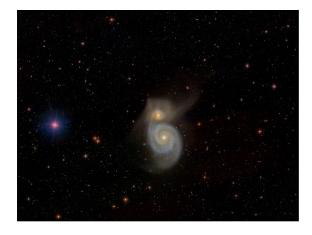


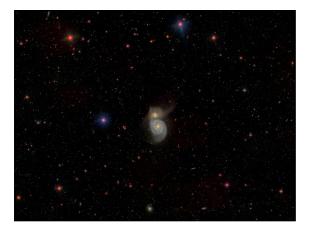


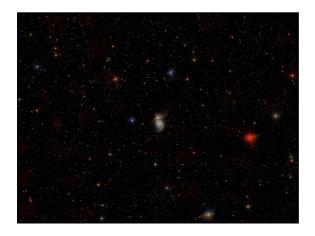
•

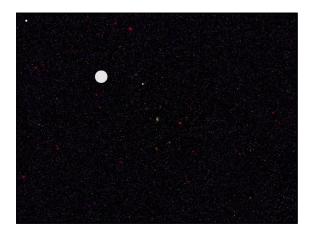

Superclusters

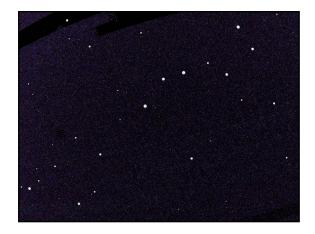
- A group of galaxy clusters may gravitationally attract each other into a larger structure called a *supercluster* a cluster of clusters
 - A supercluster contains a half dozen to several dozen galaxy clusters spread over tens to hundreds of millions of light-years (The Local group belongs to the Local Supercluster) Ursa Major
 - Superclusters have irregular shapes and are themselves part of yet larger groups (e.g., the "Great
 - Wall" and the "Great Attractor")

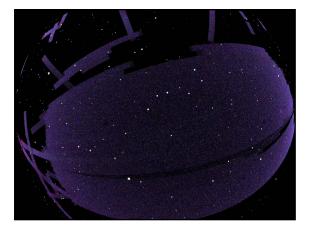


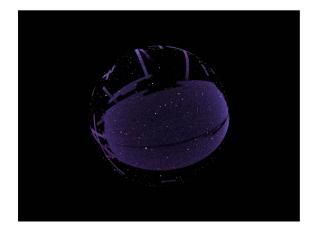

- Superclusters appear to form chains and shells surrounding regions nearly empty of galaxies voids
- Clusters of superclusters and voids mark the end of the Universe's structure we currently see

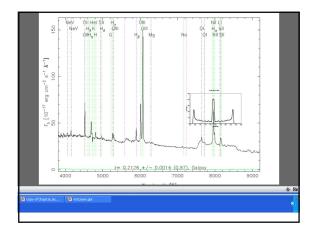












data: Sloan Digital Sky Survey and the Bright Star Catalog

visualization: David W. Hogg (NYU) with help from Blanton, Finkbeiner, Padmanabhan, Schlegel, Wherry

