Number Produced	Cost per item
1	0 2.3!
5	0 2.22
10	0 2.1:
15	0 2.03
20	0 1.98

Linear function which is the best fit to above data:

Predicted cost per item if producing 1000 items:

Using the inverse of the best fit, predict how many items were produced:

Cost per Item	Expected Number Produced:
	1.78
	1.68
	1.58
	1.48

Plot the parabola: $P(x)=x^2+5x-10$ and locate the zeros accurate to the one's digit

х	P(x)
-10	
-9	
-8	
-7	
-6	
-5	
-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Plot $f(x) = 8^x$ from -10 to 10 and also compute the log base 8 of f(x)

х	f(x)=8^x	f^-1(x)=log_8(x)
-1	0	
-9.	5	
-	9	
-8.	5	
-	8	

-7.5	
-7	
-6.5	
-6	
-5.5	
-5	
-4.5	
-4	
-3.5	
-3	
-2.5	
-2	
-1.5	
-1	
-0.5	
0	
0.5	
1	
1.5	
2	
2.5	
3	
3.5	
4	
4.5	
5	
5.5	
6	
6.5	
7	
7.5	
8	
8.5	
9	
9.5	
10	