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Chapter 12

The Sun, Our Star
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The Sun

• With a radius 100× and a 
mass of 300,000× that of 
Earth, the Sun must 
expend a large amount 
of energy to withstand 
its own gravitational 
desire to collapse

• To understand this 
process requires detailed 
observations as well as 
sophisticated 
calculations involving 
computer models and the 
laws of physics
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Properties of the Sun
• The Sun’s distance 

from Earth (about 150 
million km or 1 AU) 
was once measured by 
triangulation, but is 
now done by radar

• Once the distance is 
known, its diameter 
(about 1.4 million km) 
can be found from its 
angular size (about 1/2 
degree)
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Properties of the Sun

• From the Sun’s distance 
and the Earth’s orbital 
period, Kepler’s modified 
third law gives the Sun’s 
mass

• Mass and radius, the 
surface gravity of the Sun 
is found to be 30× that of 
Earth

• Next, the surface 
temperature (5780 K) is 
found from the Sun’s color 
and the use of Wien’s law 
for a blackbody
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Properties of the Sun
• Theoretical considerations 

then establish the Sun as 
gaseous throughout with a 
core temperature of 15 
million K

• From the amount of solar 
energy that reaches the Earth 
(4 × 1026 watts), this energy 
must be replenished by fusion 
processes in its core

• The Sun has plenty of 
hydrogen for fusion: its 
surface spectra shows 
hydrogen is 71% and 27% 
helium
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The Structure of the Sun
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The Solar Interior
• The low density upper 

layers of the Sun, where 
any photons created there 
can freely escape into 
space is called the 
photosphere

• The photosphere is yellow 
“surface” we see with our 
eyes

• Layers below the 
photosphere are opaque, 
photons created there are 
readily absorbed by atoms 
located there 8

The Solar Interior

• Theoretical calculations show that the Sun’s surface 
temperature and density both increase as the core is 
approached
– The density is similar to that found at sea level on Earth at the 

Sun’s surface and 100× that of water at the core
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The Radiative Zone

• Since the core is hotter 
than the surface, heat 
will flow outward from 
the Sun’s center

• Near the Sun’s center, 
energy is moved 
outward by photon 
radiation – a region 
surrounding the core 
known as the radiative 
zone
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The Radiative Zone

• Photons created in 
the Sun’s interior do 
not travel very far 
before being 
reabsorbed – energy 
created in the Sun’s 
center will take about 
16 million years to 
eventually diffuse to 
the surface!
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The Convection Zone

• Above the radiative 
zone energy is more 
efficiently 
transported by the 
rising and sinking of 
gas – this is the 
convection zone

12

Granulation

• Convection manifests 
itself in the 
photosphere as 
granulation, numerous 
bright regions 
surrounded by narrow 
dark zones
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The Sun’s Atmosphere

• The extremely low-density gases that lie above 
the photosphere make up the Sun’s atmosphere
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The Sun’s Atmosphere
• The density of the atmosphere decreases steadily 

with altitude and eventually merges with the 
near-vacuum of space

• Immediately above the photosphere, the 
temperature of the atmosphere decrease but at 
higher altitudes, the temperature grows hotter, 
reaching temperatures of several million Kelvin

• The reason for the increase in temperature is 
unknown, but speculation is that Sun’s magnetic 
field plays an important role
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The Chromosphere
• The lower part of the 

atmosphere is referred to as 
the chromosphere
– The chromosphere appears 

as a thin red zone around the 
dark disk of a totally 
eclipsed Sun

– The red is caused by the 
strong red emission line of 
hydrogen Hα

– The chromosphere contains 
millions of thin columns 
called spicules, each a jet of 
hot gas 16

The Corona

• Temperature in the corona eventually reaches about 1 million K 
(not much energy though due to low density)

• The corona, visible in a total solar eclipse, can be seen to reach 
altitudes of several solar radii

• The corona is not uniform but has streamers and coronal holes 
dictated by the Sun’s magnetic field
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How the Sun Works
• Structure of the Sun 

depends on a balance 
between its internal forces – 
specifically, a hydrostatic 
equilibrium between a force 
that prevents the Sun from 
collapsing and a force that 
holds it together

• The inward (holding) force 
is the Sun’s own gravity, 
while the outward (non-
collapsing) force arises 
from the Sun’s internal gas 
pressure

Without balance the Sun 
would rapidly change! 18

Pressure in the Sun

• Pressure in a gas comes from atomic collisions
• The amount of pressure is in direct proportion to the 

speed of the atoms and their density and is expressed in 
the perfect or ideal gas law
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Powering the Sun
• Given that the Sun loses energy as sunshine, 

an internal energy source must be present to 
maintain hydrostatic equilibrium
– If the Sun were made of pure coal, the Sun would 

last only a few thousand years
– If the Sun were not in equilibrium, but creating 

light energy from gravitational energy (the Sun is 
collapsing), the Sun could last 10 million years

– These and many other chemical-based sources of 
energy are not adequate to account for the Sun’s 
several billion year age
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Powering the Sun

• Mass-energy is the key
– In 1905, Einstein showed that energy and 

mass were equivalent through his famous    
E =  mc2 equation

– 1 gram of mass is equivalent to the energy 
of a small nuclear weapon

– The trick is finding a process to convert 
mass into other forms of energy
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Powering the Sun

• A detailed process for mass 
conversion in the Sun called nuclear 
fusion was found:
– Sun’s core temperature is high enough 

to force positively charged protons 
close enough together to bind them 
together via the nuclear or strong force

– The net effect is that four protons are 
converted into a helium nucleus (plus 
other particles and energy) in a three-
step process called the proton-proton 
chain
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The Proton-Proton Chain: Step 1
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The Proton-Proton Chain: Step 2
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The Proton-Proton Chain: Step 3
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Solar Neutrinos
• The nuclear fusion 

process in the Sun’s core 
creates neutrinos

• Neutrinos lack electric 
charge, have a very small 
mass, escape the Sun’s 
interior relatively 
unaffected, and shower 
the Earth (about 1 trillion 
pass through a human per 
second)
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Solar Neutrinos

• A neutrino’s low 
reactivity with other forms 
of matter requires special 
detection arrangements
– Detectors buried deep in 

the ground to prevent 
spurious signals as those 
produced by cosmic rays 
(high energy particles, like 
protons and electrons, with 
their source beyond the 
Solar System)

– Large tanks of water and 
special light detectors
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Solar Neutrinos

• Detected neutrinos are about three times less than 
predicted – possible reasons:
– Model of solar interior could be wrong

– Neutrinos have properties that are not well understood

• Current view to explain measured solar neutrinos: 
neutrinos come in three varieties (instead of previous 
one), each with a different mass, and Earth detectors 
cannot detect all varieties

• Important ramifications: A solar astronomy observation 
of neutrinos may lead to a major revision of our 
understanding of the basic structure of matter
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Solar Seismology

• Solar seismology is the study of the Sun’s 
interior by analyzing wave motions on the 
Sun’s surface and atmosphere

• The wave motion can be detected by the 
Doppler shift of the moving material

• The detected wave motion gives temperature 
and density profiles deep in the Sun’s interior

• These profiles agree very well with current 
models
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Solar Seismology
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Solar Magnetic Activity

• Surface waves are 
but one type of 
disturbance in the 
Sun’s outer layers

• A wide class of 
dramatic and lovely 
phenomena occur 
on the Sun and are 
caused by its 
magnetic field
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Sunspots
• Dark-appearing regions 

ranging in size from a few 
hundred to a few thousand 
kilometers across

• Last a few days to over a 
month

• Darker because they are 
cooler than their 
surroundings (4500 K vs 
6000 K)

• Cooler due to stronger 
magnetic fields within them
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Sunspots
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Origin of Sunspots

• Charged particles 
tend to spiral along 
magnetic field lines 
easier than they drift 
across them

• Consequently, 
magnetic fields at the 
Sun’s surface slow 
the ascent of hot 
gases from below
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Origin of Sunspots

• Starved of heat from below, the surface cools where the 
magnetic fields breach the surface creating a dark sunspot
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Prominences

• Prominences are huge glowing gas plumes 
that jut from the lower chromosphere into 
the corona
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Prominences

• Cool prominence gas is confined by its high magnetic 
field and hot surrounding gas

• Gas streams through prominence in a variety of patterns
• Associated with sunspots
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Solar Flares

• Sunspots give birth 
to solar flares, brief 
but bright eruptions 
of hot gas in the 
chromosphere

• Hot gas brightens 
over minutes or 
hours, but not 
enough to affect the 
Sun’s total light 
output
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Solar Flares

• Strong increase in radio 
and x-ray emissions

• Intense twisting and 
“breakage” of magnetic 
field lines is thought to 
be the source of flares

• Some flare eruptions 
can explosively shoot 
gas across the Solar 
System and result in 
spectacular auroral 
displays
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Impact of Solar Flares
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Heating of the Chromosphere and Corona

• While the Sun’s magnetic field cools sunspots and 
prominences, it heats the chromosphere and corona

• Heating is caused by magnetic waves generated in the 
relatively dense photosphere
– These waves move up into the thinning atmospheric gases, 

grow in magnitude, and “whip” the charged particles found 
there to higher speeds and hence higher temperatures

– Origin of waves may be from rising bubbles in convection 
zone
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Heating of the Chromosphere and Corona
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The Zeeman Effect

• Magnetic fields and 
their strength can be 
detected by the 
Zeeman effect

• Magnetic fields can 
split the spectral 
lines of an atom 
into two, three, or 
more components 
by changing the 
energy levels of the 
atom’s electrons
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The Solar Wind
• The corona’s high temperature gives its atoms enough 

energy to exceed the escape velocity of the Sun
• As these atoms stream into space, they form the solar 

wind, a tenuous gas of hydrogen and helium that 
sweeps across the entire Solar System

• The amount of material lost from the Sun via the Solar 
Wind is insignificant

• Typical values at the Earth’s orbit: a few atoms per cm3 
and a speed of about 500 km/sec

• At some point, the solar wind mingles with interstellar 
space
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The Solar Cycle

• Sunspot, flare, and prominence activity change yearly 
in a pattern called the solar cycle

• Over the last 140 years or so, sunspots peak in number 
about every 11 years

• Climate patterns on Earth may also follow the solar 
cycle
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Differential Rotation

• The Sun undergoes differential rotation, 25 
days at the equator and 30 at the poles 46

Cause of the Solar Cycle

• This rotation causes the Sun’s 
magnetic field to “wind up” 
increasing solar activity 
(magnetic field “kinks” that 
break through the surface) as 
it goes

• The cycle ends when the field 
twists too “tightly” and 
collapses – the process then 
repeats
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Changes in the Solar Cycle

• The cycle may vary from 6 to 16 years
• Considering the polarity direction of the sunspots, the 

cycle is 22 years, because the Sun’s field reverses at the 
end of each 11-year cycle

• Leading spots in one hemisphere have the same polarity, 
while in the other hemisphere, the opposite polarity leads
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Solar Cycle and Climate

• Midwestern United States and Canada experience a 
22-year drought cycle

• Few sunspots existed from 1645-1715, the Maunder 
Minimum, the same time of the “little ice age in 
Europe and North America

• Number of sunspots correlates with change in ocean 
temperatures


